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ARTICLE

Bayesian Mapping of Quantitative Trait Loci for Multiple Complex
Traits with the Use of Variance Components
Jianfeng Liu, Yongjun Liu, Xiaogang Liu, and Hong-Wen Deng

Complex traits important for humans are often correlated phenotypically and genetically. Joint mapping of quantitative-
trait loci (QTLs) for multiple correlated traits plays an important role in unraveling the genetic architecture of complex
traits. Compared with single-trait analysis, joint mapping addresses more questions and has advantages for power of
QTL detection and precision of parameter estimation. Some statistical methods have been developed to map QTLs
underlying multiple traits, most of which are based on maximum-likelihood methods. We develop here a multivariate
version of the Bayes methodology for joint mapping of QTLs, using the Markov chain–Monte Carlo (MCMC) algorithm.
We adopt a variance-components method to model complex traits in outbred populations (e.g., humans). The method
is robust, can deal with an arbitrary number of alleles with arbitrary patterns of gene actions (such as additive and
dominant), and allows for multiple phenotype data of various types in the joint analysis (e.g., multiple continuous traits
and mixtures of continuous traits and discrete traits). Under a Bayesian framework, parameters—including the number
of QTLs—are estimated on the basis of their marginal posterior samples, which are generated through two samplers, the
Gibbs sampler and the reversible-jump MCMC. In addition, we calculate the Bayes factor related to each identified QTL,
to test coincident linkage versus pleiotropy. The performance of our method is evaluated in simulations with full-sib
families. The results show that our proposed Bayesian joint-mapping method performs well for mapping multiple QTLs
in situations of either bivariate continuous traits or mixed data types. Compared with the analysis for each trait separately,
Bayesian joint mapping improves statistical power, provides stronger evidence of QTL detection, and increases precision
in estimation of parameter and QTL position. We also applied the proposed method to a set of real data and detected
a coincident linkage responsible for determining bone mineral density and areal bone size of wrist in humans.
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In QTL mapping studies, it is a common practice to collect
data observations on multiple traits. Generally, QTLs are
mapped for the traits by use of single-trait analyses (i.e.,
analyzing the traits separately and reporting the respective
results), although many of these traits are correlated phe-
notypically and genetically. An alternative way of QTL
mapping for these correlated traits is joint analysis, by
which multiple traits are analyzed simultaneously under
a unified genetic model. The advantages of joint analysis
over single-trait analysis are twofold. First, joint analysis
may increase the statistical power and precision of QTL
mapping because it combines phenotype information
from all the traits and takes into account the correlation
(environmental and genetic) structure of the traits. Sec-
ond, genetic mechanisms of QTLs on correlated traits can
be probed directly through joint analysis. For example,
we can dissect a portion of genetic variation and covari-
ation among traits by localizing QTLs and testing whether
the genetic correlation is due to pleiotropy (i.e., a QTL
influencing multiple correlated phenotypes) or coinci-
dent linkage (i.e., closely linked distinct QTLs for different
traits).

Several methods have been developed for QTL mapping

with the use of joint analysis for multiple traits.1–14 Among
these, different types of traits have been investigated, such
as multiple continuous traits with normal distribution,1,

2,5–7,11,12 multiple discrete traits,3,8 and mixtures of traits
with different phenotype distributions.4,8–10 These studies
can be grouped into three broad categories according to
the statistical methods adopted, each of which has its ad-
vantages and limitations.

The first method is based on the likelihood-ratio test.1,

7,8,10 A concern with this method is that increasing the
number of traits may lead to a large number of unknown
parameters in the model; thus, potential gains from joint
analysis may be offset by the increased degrees of freedom
of the test statistic.10 In this situation, joint analysis could
be less powerful than single-trait analysis.14

The second method adopts a semiparametric approach
based on generalized estimation equations,3 which can
avoid the difficulties of full-likelihood methods and can
have some advantages, such as avoidance of distribution
assumptions and the ease and flexibility of model speci-
fication.3 This method was developed under the double-
cross design for experimental populations; its perfor-
mance in natural populations (such as humans) remains
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unclear, and its performance relative to that of the single-
trait analysis is not yet known.

The third method is based on the dimension-reduction
technique and involves the performance of principal-
components analysis (PCA)2 for multiple correlated traits.
Analysis of the “super traits” generated via PCA requires
little extra effort in comparison with single-trait analysis.
However, joint analysis based on PCA may incur spurious
linkage12,15 and cause difficulties in the biological inter-
pretation of study results.

In QTL mapping for multiple correlated traits, the Bayes-
ian method represents another useful tool because of some
of its distinct advantages over the above three methods,
such as the ease of results interpretation; the inherent flex-
ibility in handling more-complex models, various exper-
imental populations, and various types of phenotypes;
and the resultant ability to incorporate information from
different sources.16–18 The Bayesian approach has been suc-
cessfully used for QTL mapping of a single trait.16,17,19–29

However, so far, little work has been done for multiple
correlated traits under a Bayesian framework.11 In partic-
ular, no Bayesian method has been developed for mapping
QTLs underlying correlated traits of a mixture of quanti-
tative and discrete traits.

In this article, under an identity-by-descent (IBD)–based
variance-components model, we developed a multivariate
version of the Bayes method for QTL mapping of multiple
traits under different situations, such as with multiple
quantitative traits and mixed types of traits in humans.
In addition, we show how to distinguish pleiotropy from
coincident linkage, using the Bayes factor (BF). Our pro-
posed method is implemented through the Markov chain–
Monte Carlo (MCMC) algorithm, in which two samplers,
the Gibbs sampler30 and the reversible-jump MCMC (RJ-
MCMC),31 are employed to generate joint posterior dis-
tributions of all unknowns. We conducted two simulation
experiments to evaluate the performance of our method.
The results show that our joint-analysis method outper-
forms univariate analyses and performs well for QTL
mapping of multiple correlated traits under various situ-
ations. In addition, we applied our Bayesian joint-map-
ping method to a set of real data on humans. The results
show that the proposed method has practical significance
in the human genetics field.

Methods
Bayesian Mapping for Multiple Continuous Traits

Statistical model.—Suppose there are n individuals with obser-
vations on m continuous traits in an investigated population. For
ease of presentation, we adopt a full-sib design without having
records for parents in each family. We assume that parents in all
families come from an outbred population, where the distribution
of genotypes at each locus is in Hardy-Weinberg equilibrium and

the alleles of all loci under study are in linkage equilibrium. The
multivariate mixed model can be written as

l

y p Xb � Zu � Wq � e , (1)� i
ip1

where is an vector of observations′ ′ ′ ′y p (y , … ,y , … ,y ) nm # 11 k n

of n individuals on m traits ( is an vector of individualy m # 1k

k on m traits), X is a design matrix, and is a vector of fixedb

effects. In Bayesian theory, a “fixed effect” actually refers to the
random effect with infinite prior variance, and its prior distri-
bution is commonly assumed to be uniform with predefined up-
per and lower limits. Z is a design matrix relating records to
individuals, u is a vector of additive polygenic effects, W is a
matrix relating each individual’s record to its QTL effects, is aqi

vector of additive QTL effects corresponding to the ith QTL, and
e is a vector of residuals. Here, we define l, the number of QTLs,
as an unknown to be estimated. In model (1), suppose that the
random vectors u, , and e are mutually independent, each fol-qi

lowing multivariate normal distributions as follows:

p(uFG,A) p N(0,G � A) , (2)

where G is the (co)variance matrix of the polygenic effectsm # m
across m traits, A is the additive genetic relationship matrix that
can be obtained from the pedigree of all individuals, and is the�

Kronecker product operator.

p(q FQ ,M,l ) p N(0,Q � P ) , (3)i i i i i

where is the (co)variance matrix of the ith QTL effectsQ m # mi

across m traits. is the IBD matrix for the ith QTL conditionalPi

on marker data (M) and the position ( ) of the ith QTL withinli

the chromosome region considered. In this article, we use the
IBD information of all markers simultaneously to infer IBD matrix

, on the basis of the multipoint method proposed by Xu andPi

Gessler.32

p(eFR) p N(0,R � I) , (4)

where R is the residual (co)variance matrix and I is anm # m
identity matrix.

Joint posterior distribution of parameters.—In a Bayesian frame-
work, joint posterior distribution is the prerequisite to Bayesian
inference. From model (1) and equations (2)–(4), parameters to
be estimated include the number of QTLs, l; the locations of
QTLs, ; and the model effects,l p (l , … ,l ) v p (b,u,q,G,Q,R)1 l

(here q denotes , and Q denotes ). On the basisq , … ,q Q , … ,Q1 l 1 l

of the Bayes theorem, the joint posterior density of all parameters
( ), conditional on the observables y, marker information M,l,l,v
and pedigree information A, can be written as

p(l,l,vFy,M,A) ∝ p(yFl,l,v)p(l,l,v) . (5)

The first term in the right-hand side of equation (5) is the model’s



306 The American Journal of Human Genetics Volume 81 August 2007 www.ajhg.org

likelihood conditional on all unknowns, which is assumed to be
multivariate normal:

n 1
� �p(yFl,l,v) p (2p) FR � IF2 2

l1 ′#exp[� (y � Xb � Zu � Wq )� i2 ip1

l

�1#(R � I) (y � Xb � Zu � Wq )] . (6)� i
ip1

The second term in equation (5) is the joint prior distribution
of ( ), which can be extended asl,l,v

l

p(l,l,v) p p(l)p(b)p(G)p(uFG)p(R)�
ip1

#[p(l )p(Q )p(q FQ )] . (7)i i i i

The prior distributions of u and are given in equations (2)qi

and (3), respectively. The fixed effects are random variables withb

uniform prior distributions on a predefined interval in the Bayes-
ian framework:

p(b) ∝ constant . (8)

The number of QTL, l, can be assumed to be a truncated Pois-
son distribution with mean and a predefined maximum L:ml

�m xle ml , for x p 0, 1,…,L
x!P(l p x) p . (9){
0, otherwise

Since we have no information about QTL positions , a priorli

uniform distribution with an interval equivalent to the length of
the chromosome region of interest is available for each QTL:

p(l ) ∝ constant . (10)i

As for the prior distributions of G, , and R, we assume anQi

m-dimensional inverted Wishart distribution with p df and an
scale matrix V for all these random matrices:m # m

p(G) p IW (V,p) ,m

p(Q ) p IW (V,p) ,i m

and p(R) p IW (V,p) . (11)m

If we have no prior knowledge about G, , and R, we can setQi

and , such that the distributions in equationV p 0 p p �(m � 1)
(11) become uniform for these matrices.33

Equations (2), (3), and (6)–(11) can together fully describe
equation (5), the joint posterior distribution of all unknowns.
This joint posterior is the basis for deriving the fully conditional
distributions of all unknowns of interest, and further Bayesian
inference for these unknowns will be based on respective fully
conditional distribution via implementation of the Gibbs sampler
and RJ-MCMC.

Fully conditional posterior distributions of unknowns.—Followingthe
basic idea of deriving the fully conditional distribution of a var-
iable,33 we pick up those terms that include this variable from

the joint posterior distribution of all parameters given by equa-
tion (5).

Specifically, the fixed-effects vector b has a fully conditional
distribution of

bFu,q,G,Q,R,y,l,l

′ �1 �1 ′ �1 ∗ ′ �1 �1∼ N[(XR X) XR y ,(XR X) ] , (12)

where . The polygenic additive ef-l∗y p y � Zu �� Wq m # 1iip1

fects subvector, , for individual k (with the as-u (k p 1, … ,n)k

sumption that each individual has observations on all m traits)
has the form of the fully conditional distribution of

�1 �1 kk �1u Fb,u ,q,G,Q,R,y,l,l ∼ N[(R � G A )k �k

�1 ∗ �1 kj#(R y � G A u ) ,�k j
j(k

�1 �1 kk �1(R � G A ) ] , (13)

where . Here, and denote the re-l∗y p y � X b �� W q X Wk k k k i k kip1

spective matrices X and W with only the lines from (k � 1)m �

to km included, means the vector u with subvector ex-1 u u�k k

cluded, and is the (k,j)th element of the inverse of A. ThekjA
fully conditional distribution of the effects subvector ofm # 1
the ith QTL, , for individual k is given asq (k p 1, … ,n)i,k

�1 �1 kk �1q Fb,u,q ,G,Q,R,y,l,l ∼ N[(R � Q P )i,k �(i,k) i i

�1 ∗ �1 kj#(R y � Q P q ),�k i i i,j
j(k

�1 �1 kk �1(R � Q P ) ] , (14)i i

where denotes vector q with the subvector excluded,q q�(i,k) i,k

and . The fully conditional dis-∗y p y � X b � Z u �� W q ′′k k k k k ii (i

tributions of the (co)variance matrices , G, and RQ (i p 1, … ,l)i

are m-dimensional inverted Wishart distributions, each having
df:n � m � 1

Q Fq ,P ∼ IW (V ,n � m � 1) ,i i i m Qi

GFu,A ∼ IW (V ,n � m � 1) ,m G

and RFe ∼ IW (V ,n � m � 1) , (15)m R

where scale matrices , , and act as the hyper-m # m V V VQ G Ri

parameters of inverted Wishart distributions corresponding to
the three random matrices. Here, the (r,s)th element of matrix

is , with indicating the vec-′ �1 �1V V (r,s) p [q P q ] q n # 1Q Q i(r) i i(s) i(r)i i

tor of the ith QTL effects for trait . Similarly, ther(r p 1, … ,m)
(r,s)th element of matrix is , and the′ �1 �1V V (r,s) p [u A u ]G G (r) (s)

(r,s)th element of matrix is , with indi-′ �1V V (r,s) p [e e ] eR R (r) (s) (r)

cating the vector of environmental effects for trait r, wheren # 1
.le p y � b � u �� q(r) (r) (r) (r) i(r)ip1

Unlike the above parameters, there is no explicit expression
for the fully conditional posterior distributions of the parameters
l and l. Hence, we cannot obtain the kernel of a standard den-
sity—for example, normal distribution—for either of them. Ac-
cordingly, we use RJ-MCMC, an extension of the Metropolis-Has-
tings sampler,34,35 to jointly draw the samples of these two
parameters with no need for the explicit expressions of their fully
conditional distributions (see detailed description in the follow-
ing section).
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Bayesian inference of unknowns based on MCMC process.—We sim-
ulated an MCMC process for sampling the joint posterior distri-
bution of all unknowns given in equation (5), and these joint
posterior samples were used to perform Bayesian mapping and
for parameter inference. The basic idea of the MCMC process is
to mimic a random walk in the space of all unknowns in accor-
dance with their respective fully conditional distributions. The
simulated random walk finally converges to a stationary distri-
bution,36 which can be regarded as the joint posterior distribution
of the unknowns.

When MCMC is performed, those unknowns except l and l,
each having the standard form of a fully conditional distribution,
will be sampled through the Gibbs sampler, whereas changing
the number of QTLs, l, requires a corresponding change in the
dimension of the model and thus needs a reversible-jump step.
This has been achieved via RJ-MCMC in suites of studies on sin-
gle-trait QTL mapping.16,17,28,29 In this article, we directly extend
RJ-MCMC to sample the number of QTLs, l, and their positions,
l, in the case of multiple-trait mapping. Specifically, the MCMC
process for generating the joint posterior samples of all unknowns
can be briefly summarized as follows:

1. Initiate (l,l, ) in the space of all parameters with proper start-v

ing values in terms of their prior distributions given in equa-
tions (9) (l); (10) (l); and (2)–(4), (8), (10), and (11) ( ).v

2. Calculate IBD matrices for the corresponding QTLs in terms
of their positions, using the multipoint method.32 Sample all
unknowns included in in turn, in accordance with their fullyv

posterior distributions given in equations (12)–(15).
3. Jointly sample l and l, using the updating scheme similar to

those in single-trait analyses,16,17,28,29 in accordance with three
types of moves with proposal probabilities , ,p p 1/3 p p 1/3m d

and to (1) modify l and keep l unchanged, (2) ran-p p 1/3a

domly remove one of the existing QTLs from the model if
, and (3) add a new QTL to the model if , respectively.l 1 0 l ! L

a. When the first type of move is chosen, we update positions
for existing QTLs sequentially. Specifically, for the ith QTL,
a proposal position is sampled from a uniform distri-∗li

bution with symmetric interval to around thel � d l � di i

previous position , where d is the predefined tuning pa-li

rameter. The new vector of ith QTL effects, , is also sam-∗qi

pled from equation (14) in accordance with the IBD matrix
corresponding to a new position . The proposal po-∗ ∗P li i

sition is accepted with probability∗li

1 ∗′ �1 ∗exp[� y (R � I) y ]m m2
∗a(l ,l ) p min 1, ,i i { }1 ∗′ �1 ∗exp[� y (R � I) y ]2

where and∗ ∗ ∗y p y � Xb � Zu � Wq �� Wq y p′′m i ii (i

. If the new position is accepted,ly � Xb � Zu �� Wq ′′ ii p1

the corresponding effect vector of the ith QTL, , is also∗qi

updated. Otherwise, both the position and effects of ith
QTL remain unchanged. This sampling process will be re-
peated at the position of each existing QTLs.

b. When happens, each existing QTL has an equal prob-pd

ability of being removed from the current model. Suppose
the ith QTL is proposed to be deleted; then, the multi-

variate version of acceptance probability is similar to sin-
gle-trait mapping37,38:

a(l,l � 1)

1 ∗ �1 ∗exp[� y (R � I) y ]d d2 l pap min 1, # # ,{ }1 ∗′ �1 ∗ m pl dexp[� y (R � I) y ]2

where and∗ ∗y p y � Xb � Zu �� Wq y p y � Xb �′′d ii (i

. If the deletion of the ith QTL is accepted,lZu �� Wq ′′ ii p1

the number of QTLs becomes ; otherwise, the previousl � 1
value l remains unchanged.

c. If the ( )th QTL is proposed to be added into the model,l � 1
we will randomly assign starting values for corresponding
parameters of the new QTL ( , , and ), which isl q Ql�1 l�1 l�1

similar to step 1. When happens, more QTL parameterspa

with new starting values will be introduced to the model
compared with single-trait mapping. To enhance the speed
of convergence and to improve mixing of the Markov
chain, we use the Gibbs sampler to perform more than
one update of and on the basis of alternatingq Ql�1 l�1

equations (14) and (15), before calculating the acceptance
probability of adding a new QTL. In our studies, we em-
pirically determine the extra 10 updates of parameters for
the proposed QTL. Hence, the acceptance probability for
the new QTL with updated parameters instead of their
original starting values is given as

a(l,l � 1)

1 ∗′ �1 ∗exp[� y (R � I) y ]a a2 m pl dp min 1, # # ,{ }1 ∗′ �1 ∗ l � 1 paexp[� y (R � I) y ]2

where andl�1∗ ∗y p y � Xb � Zu �� Wq y p y � Xb �a iip1

. If the proposed QTL is accepted, the re-lZu �� Wqiip1

sponding QTL parameters are also accepted, and the num-
ber of QTLs becomes . Otherwise, the QTL numberl � 1
remains l.

4. The above steps constitute one iteration. The Markov chain
will be constructed by repeating steps 2–3.

When large enough joint posterior samples of all unknowns
are generated via the above MCMC process, QTL mapping and
parameter estimation can be performed according to the marginal
posterior density of all unknowns based on corresponding sam-
ples. Here, we adopt a histogram kernel to construct a QTL in-
tensity function, which is used to determine the number and the
locations of QTLs. Other parameters are also estimated from those
samples in which QTL locations fall into the regions with suffi-
ciently high estimated QTL intensities. This method has been
commonly used in single-trait mapping.16,17,19,28,29

Bayesian Mapping for Mixed Types of Traits

In practical research, investigators may collect data of different
types for a sample set. For example, both binary traits (e.g., disease
status) and continuous traits (e.g., quantitative measures that are
risk factors for the disease under study) are available in a study.
In this study, we describe—for the first time, to our knowledge—
a Bayesian method for joint mapping of loci that affect the two
different types of traits. We then derive a general version of the
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joint-mapping method for mixed types of multiple continuous
traits and multiple ordered categorical traits.

Bivariate analysis with one binary trait and one continuous trait.—For
a record in a binary fashion, an underlying normal variable, ,yk

is often used to determine the value of for individualw k(k pk

—that is, if , and if . Because we1, … ,n) w p 1 y 1 0 w p 0 y � 0k k k k

set the threshold , a constraint—that residual error variancet p 0
—must be superimposed to avoid overparameterization.2j p 1e,y

From this threshold model, we can jointly analyze the continuous
trait Y and the liability y on the basis of exactly the same meth-
odology as the aforementioned Bayesian mapping for multiple
continuous traits if only y is available. Hence, the key issue here
is a need to generate the fully conditional distribution of the
liability y. Following Sorensen’s method,33 we can derive the fully
conditional distribution of for individual k:yk

p(y Fl,l,v,w,y ,y) ∝ p(y ,y Fl,l,v)p(w Fy )k �k k k k k

∝ p(y Fy ,l,l,v)[I(y 1 0)I(w p 1)k k k k

�I(y � 0)I(w p 0)] , (16)k k

where parameters l, l, and have the same meanings as men-v

tioned above; the vectors andn # 1 w p (w , … ,w ) y p1 n

contain phenotypic records for n individuals; and(y , … ,y )1 n

is the vector of liability with excluded. Note thaty y y�k k

is a truncated (10 if and !0 if )p(y Fl,l,v,w,y ,y) w p 1 w p 0k �k k k

normal distribution from equation (16). The mean of the con-
ditional normal distribution of isyk

l

E(y Fl,l,v,w,y ,y) p b � u � q�k �k k,y k,y i,(k,y)
ip1

l
�x2� [y � b � u � q ] , (17)�k k,y k,y i,(k,y)�1 2x � x ip11 2

and the variance is

�1x1Var (y Fl,l,v,w,y ,y) p . (18)k �k �1 2x � x1 2

Here, the new parameters and are introduced for the drawingx x1 2

of samples of , which are also used to update the (co)variancey

matrix of residual effects R between two traits.33 A brief descrip-
tion of drawing samples of these two parameters is given below.

As mentioned earlier, we predefine the constraint be-2j p 1e,y

cause of the feature of binary data, rather than assigning an orig-
inal inverse Wishart prior to [ ], as shown in equation2 2j , j , je,y e,yy e,y

(11). Accordingly, the (co)variance matrix R between two2 # 2
traits has the form

2 2j j j je,y e,yy e,y e,yyR p p ,2( ) ( )j j j 1e,yy e,y e,yy

which results in a conditional inverse Wishart prior to
. Subsequently, the fully conditional distribution2 2j ,j Fj p 1e,y e,yy e,y

of follows a conditional inverse Wishart2 2j ,j Fj p 1,l,l,v,y,ye,y e,yy e,y

distribution. The parameters and can be used to indirectlyx x1 2

sample from the conditional inverse Wishart distribution.2j ,je,y e,yy

For ease of presentation, we rewrite the scale matrix in theVR

inverse Wishart distribution given by equation (15):

′ ′ �1 ′ ′ee ee ee eey y �1 y yV p ⇒ V pR ′ ′ R ′ ′( ) ( )ee ee ee eey y y y

W W11 12p . (19)( )W W12 22

First, we generate and by drawing successively from a one-x x1 2

dimensional Wishart distribution and a normal distribution, re-
spectively:

(x FW ) ∼ W (W ,n � 3)1 11 1 11

and

�1W FV F12 R(x Fx ,V ) ∼ N , .2 1 R ( )W x W11 1 11

Second, ( , ) acts as a realized value from the fully�1 2x � x �x1 2 2

conditional distribution . and jointly2 2j ,j Fj p 1,l,l,v,y,y x xe,y e,yy e,y 1 2

contribute to the updating of liability through equations (17)y

and (18).

In brief, we need to make the following minor modification
to the original MCMC process, to accommodate Bayesian map-
ping for a mixed type of bivariate analysis:

1. In step 1, we assign starting values to the liability on they

basis of the truncated normal prior.
2. In step 2, we generate and after updating the scalex x1 2

matrix in equation (19), and then the liability and theV yR

(co)variance matrix R are updated by and . The originalx x1 2

fully conditional distribution forRFe ∼ IW (V ,n � m � 1)m R

sampling R will no longer play any role.

Except for the above two steps, no more modifications are re-
quired to construct the chain in joint analyses of mixed types of
traits.

Additionally, we have extended the above methodology to a
general situation in which multiple continuous traits and mul-
tiple ordered categorical traits are considered. A detailed descrip-
tion for this extension is provided in appendix A.

Testing Pleiotropy versus Coincident Linkage

In analyses of multiple traits, it is important to discriminate be-
tween pleiotropy and coincident linkage. In our studies, we de-
veloped a novel method that uses the BF to test for pleiotropy
versus coincident linkage. For simplicity, we detail our method
for bivariate analyses here.

For model (1) mentioned earlier in this section, we assume a
pleiotropic QTL model—that is, l QTLs, each affecting all traits.
Suppose we have detected a QTL within the chromosomal in-
terval to with sufficient posterior density. To test pleiotropyk ka b

versus coincident linkage, we propose a null model involving two
closely linked QTLs within the interval to . It is reasonablek ka b

that the covariance of QTL effects on the two traits can be con-
strained to 0.6,10 Thus, testing pleiotropy versus coincident linkage
is the comparison of the original pleiotropic model (modelplei.)



www.ajhg.org The American Journal of Human Genetics Volume 81 August 2007 309

with the coincident linkage model (modellink.), with use of the BF
in a Bayesian framework.

p(yFmodel )plei.BF p .
p(yFmodel )link.

The BF can be calculated via harmonic mean estimators39 of
the marginal probabilities, and ,p(yFmodel ) p(yFmodel )plei. link.

given the respective model.

N
p(yFmodel ) p ,t

N 1� (v) v( ){ }
vp1 p[yFQ ,else ]t

where t denotes either the pleiotropic model or the coincident
linkage model fitted, and N is the number of total iterations in
the MCMC process. and are samples of all unknowns(v) (v)Q elset

drawn from the th iteration. Here, is the (co)variancev Q 2 # 2t

matrix of the QTL, which has been located in the interval toka

, and “else” denotes samples of all unknowns except . Cal-k Qb t

culation of is straightforward according to equa-(v) (v)p[yFQ ,else ]t

tion (6).
Since calculation of the BF is based on the outcomes of original

joint-mapping analyses, the estimates of QTL number and the
CIs of respective QTLs will be treated as constant when pleiotropy
versus coincident linkage is being tested via the BF, and we only
need to update the location of each QTL and its respective pa-
rameters within its interval rather than add or delete a QTL via
the reversible-jump step in the MCMC process. Furthermore, be-
cause the covariance of QTLs between two traits is constrained
to 0 in the coincident linkage model, a simple conditional inverse
Wishart distribution33 is used to draw the samples of underQt

the null model, instead of using the original fully conditional
distribution shown in equation (15).

On the basis of the output of the BF, we adopt the commonly
used criteria22,40 to judge which model—that is, pleiotropic or
coincident linkage—is more favorable. Here, andBF 1 10 10 1

suggest a pleiotropic model with strong and moderate evi-BF 1 3
dence, respectively. and suggest a coinci-BF ! 0.1 0.1 ! BF ! 0.3
dent linkage model with strong and moderate evidence, respec-
tively. And, does not favor either model—that is, we0.3 ! BF ! 3
cannot discriminate pleiotropic effects from coincidently linked
QTLs within interval to .k ka b

Results
Simulation Studies

Design of the simulation experiments.—To evaluate the pro-
posed method, we conducted simulations for joint map-
ping of multiple traits in different scenarios. For concise-
ness, only two traits were considered in each of the two
situations (two quantitative traits involved in the first sim-
ulation and a mixture of a quantitative trait and a binary
trait in the second simulation). For ease of comparison,
the same set of simulated data is used in both simulations,
including the population, marker, QTL information, and
phenotypic data.

We simulated 1,000 full-sib families, each with 3 sib-
lings (a total of 3,000 individuals). We assumed a chro-
mosome region of 100 cM, with 11 evenly spaced codom-

inant markers and an intermarker distance of 10 cM. Four
alleles were randomly simulated with equal probability at
each marker locus. Within the region, two sets of QTLs
were simulated. The first set has two QTLs both residing
at 25 cM, one with variance for trait 1 and the2j p 0.2q1,1

other with for trait 2; the covariance between2j p 0.3q1,2

two traits that is due to these two QTLs is , whichj p 0q1,12

implies two coincidently linked QTLs. The second set has
one QTL residing at 75 cM with parameters similarly
defined as for trait 1 and for2 2j p 0.2 j p 0.3 � �q2,1 q2,2

trait 2 and rendering covariance 2 2 0.5j p (j # j )q2,12 q2,1 q2,2

for the two traits, which implies a pleiotropic QTL. Here,
we arbitrarily use a small positive constant, ,� p 0.01
to make the (co)variance matrix of the second QTL have
the inverse. We set the polygenic (co)variances ,2j p 0.6a,1

, and and residual (co)variances2j p 0.4 j p 0.2a,2 a,12

, , and for the two traits.2 2j p 1.0 j p 1.0 j p 0e,1 e,2 e,12

In the first simulation experiment, normal distributed
data of the two traits and for individualy y k(k p1 2

are generated using the infinitesimal model41:1,…,3,000)

y m q q q q1,k 1 1,1,kp 1,1,kp 1,2,kp 1,2,kmp � � � �( ) ( ) ( ) ( ) ( ) ( )y m q q q q2,k 2 2,1kp 2,1,km 2,2,kp 2,2,km

a a a e1,kp 1,km 1,kw 1,k�0.5 � 0.5 � � ,( ) ( ) ( ) ( )a a a e2,kp 2,km 2,km 2,k

where we take the overall mean vector , and′ ′(m ,m ) p (0,0)1 2

paternal- and maternal-allele effect vectors of the first QTL
for individuals and are sam-k,(q ,q ) k,(q ,q )1,1,kp 2,1,kp 1,1,km 2,1,km

pled from the same two-dimensional normal distribution
with a mean vector (0, 0)’ and a variance2 # 1 2 # 2
matrix :0.5Vq1

20 0 j jq1,1 q1,12N ,0.5V p N ,0.5q1 2( ) ( ) ( )[ ] [ ]0 0 j jq1,12 q1,2

0 0.2 0
p N ,0.5 .( ) ( )[ ]0 0 0.3

Similarly, for the second QTL, vectors and(q ,q )1,2,kp 2,2,kp

are sampled from the same two-dimensional(q ,q )1,2,km 2,2,km

normal distribution with mean vector (0, 0)’ and2 # 1
variance matrix :2 # 2 0.5Vq2

20 0 j jq2,1 q2,12N ,0.5V p N ,0.5q2 2( ) ( ) ( )[ ] [ ]0 0 j jq2,12 q2,2

�0 0.2 0.2 # 0.3
p N ,0.5 .( ) ( )[ ]�0 0.2 # 0.3 0.3 � 0.01

The vectors and are paternal and′ ′(a ,a ) (a ,a )1,kp 2,kp 1,km 2,km

maternal polygene additive effects vectors, respectively,
which are sampled from

0 Va Va 0 0.6 0.21 1,2N , p N , .( ) ( ) ( ) ( )[ ] [ ]0 Va Va 0 0.2 0.41,2 2
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The vector of within-family deviation in polygene ef-
fects is sampled from′(a ,a )1,kw 2,kw

20 j j 0 0.6 0.2a,1 a,12N ,0.5 p N ,0.5 .2( ) ( ) ( ) ( )[ ] [ ]0 j j 0 0.2 0.4a,12 a,2

The residual effect vector, , is sampled from a′(e ,e )1,k 2,k

two-dimensional standard normal distribution. On the
basis of these two simulated observation vectors, we ob-
tained the realized phenotypic (co)variance matrix,

y 1.9823 0.41201Var p ,( ) ( )y 0.4120 2.06182

which is highly consistent with the sum of all (co)variance
matrices of all effects involved in the simulation.

In the second simulation experiment, we kept the orig-
inal phenotypes of the same but truncated phenotypicy1

values of to generate a new binary trait, , using ay w2 2

threshold of 0. Because we set the overall mean to be 0
for both traits, this led to 50% population incidence for

.w2

To compare the efficiency of the joint analyses with
single-trait analyses, separate analysis on each trait was
also performed in the two simulation experiments. Our
Bayesian mapping method for joint analyses can be di-
rectly used for single-trait analyses by taking the trait num-
ber . In both experiments, we assume that pheno-m p 1
type records are not available for all the parents.

In each MCMC analysis, we ran a single long chain. We
set the burn-in iterations to 1,000, and then the next

cycles of simulations were performed to generate55 # 10
samples of all unknowns. We stored one iteration in every
50 MCMC cycles to reduce serial correlation between the
samples, so that the total number of samples kept in each
analysis was . For each MCMC process, the initial val-410
ues for all unknowns are randomly generated within the
parameter space in accordance with their prior distribu-
tions, rather than with use of predetermined specific val-
ues. The prior for the overall mean was uniform over the
range �2.0 to 2.0. The priors for all variance parameters
were generated from the uniform range 0–2.0, and, for
covariance parameters (only for joint analyses), the priors
were generated from the range �2.0 to 2.0; the starting
value for each (co)variance matrix must assure the exis-
tence of its inverse. We set the maximum number of QTLs
as within the chromosomal region of 100 cM inL p 4
length. The initial value of l was randomly sampled from
its prior distribution given by equation (9). In addition,
when we updated the location of the existing ith QTL,
the tuning parameter of the proposal distribution, , wasdi

set to 2 cM.
Results of the simulation experiments.—The approximate

Bayesian posterior distributions of QTL intensities ob-
tained from both simulation experiments are presented
in figure 1. The QTL intensity graphs corresponding to
different analysis strategies, including joint mapping (de-

noted as J-12) and separate mapping for trait 1 (denoted
as S-1) and trait 2 (denoted as S-2), are largely concentrated
around the true locations of the two simulated QTLs. Spe-
cifically, when two continuous traits were considered in
the analysis, two QTL intensity peaks (as shown in fig. 1a)
were shaped on chromosomal positions of 24–25 cM and
75–76 cM for J-12, 24–25 cM and 76–77 cM for S-1, and
25–26 cM and 73–74 cM for S-2, whereas, when one con-
tinuous trait and one binary trait were involved in the
analysis, two peaks (as shown in fig. 1b) were at 26–27 cM
and 74–75 cM for J-12 and at 25–26 cM and 72–73 cM for
S-2. (The graph for S-1 here is the same as that shown in
fig. 1a because exactly the same data are adopted in both
experiments.) Overall, all six graphs have two peaks that
are quite close to the true positions of two QTLs. These
results highly favor the two-QTL model, consistent with
the cases in simulations. When comparing the shapes for
J-12 with those for S-1 and S-2 in each experiment, all the
highest QTL intensity peaks occurred in joint-mapping
analyses, indicating that joint-mapping analyses provided
stronger evidence and more information for QTL detec-
tion than did single-trait analyses. In addition, by com-
paring the shapes for J-12 in figure 1a and 1b, we found
that some information was lost when binary data were
involved in joint-mapping analyses. This is reflected by
the result that the two QTL peaks for J-12 in figure 1b (for
the mixture of one continuous trait and one binary trait)
are less intense than those in figure 1a (for the two con-
tinuous traits).

The approximate posterior distributions of the QTL
number generated from each analysis are presented in ta-
ble 1. The posterior expectations, treated as estimates of
the QTL number, are largely equal among different anal-
yses and are consistent with the simulated number of
QTLs. Furthermore, the posterior modes of the QTL num-
ber obtained from all analyses are the same as the true
number of QTLs in both experiments. Within our expec-
tation, the posterior variance of QTL number for multiple-
trait analyses is smaller than those for single-trait analyses
in both simulation experiments, and the variance of QTL
number appeared smaller in the joint analysis for contin-
uous traits than for mixed types of traits.

Besides the estimate of QTL number given above, we
also obtained estimates of all other unknowns involved
in model (1) from respective posterior samples. The results
from different simulation experiments, given in tables 2
and 3, are detailed below.

For all analyses in the two experiments, we chose a
suitable length of a chromosomal region around each QTL
intensity peak as the location interval of the detected QTL,
and, thus, the summed QTL intensity within the chosen
region was sufficiently high. The posterior means of the
QTL locations and the estimates of QTL (co)variances
among traits were also obtained from the respective pos-
terior samples, in which QTL locations fell into the chosen
chromosomal region for each detected QTL. From the re-
sults shown in tables 2 and 3, we found that the QTL



www.ajhg.org The American Journal of Human Genetics Volume 81 August 2007 311

Table 1. Inferred Posterior Distribution and Posterior
Mean of the Number of QTLs in Joint Mapping and Single-
Trait Mapping from the Two Simulation Experiments

Experiment
and
Method

Frequency

No. of QTLs

Mean Variance0 1 2 3 4

1a:
J-12 .0002 .0054 .9928 .0012 .0004 1.9962 .0090
S-1 .0039 .0530 .8126 .1203 .0102 2.0799 .2233
S-2 .0009 .0616 .7989 .1320 .0066 2.0818 .2169

2b:
J-12 .0003 .0021 .9053 .0609 .0314 2.1210 .1752
S-1 .0039 .0530 .8126 .1203 .0102 2.0799 .2233
S-2 .0025 .0234 .8325 .1187 .0229 2.1361 .2252

a In the first experiment, two continuous traits, and , are analyzedy y1 2

by joint mapping (J-12) and by separate mapping for (S-1) and (S-y y1 2

2).
b In the second experiment, the continuous trait and the binaryy1

trait are analyzed by joint mapping (J-12) and by separate mappingw2

for (S-1) and (S-2).y w1 2

Figure 1. Approximate posterior distributions of QTL locations based on QTL intensity with step length of 1 cM from joint mapping
and single-trait mapping in both simulation experiments. a, Experiment 1 with two continuous traits. b, Experiment 2 with a mixture
of one quantitative and one binary trait. J-12, S-1, and S-2 denote joint mapping for both traits and separate mapping for trait 1 and
trait 2, respectively. The true number of QTLs is two, located at positions 25 and 75 cM.

interval showed a smaller length but a higher summed
QTL intensity for joint mapping compared with separate
mapping in both simulations. This demonstrates that
joint mapping can provide stronger evidence and produce
better precision for QTL detection. From the posterior
means and posterior mean squared errors of QTL loca-
tions, the estimated locations were very close to the cor-
responding simulated true ones. However, separate anal-
yses usually generated larger posterior mean squared errors
than did joint analyses.

Similarly, QTL (co)variance estimates were largely close
to the true values simulated, and the larger posterior mean
squared errors of QTL variances always occurred in single-
trait analyses compared with joint analyses. Note that es-
timates of QTL covariance among traits are available only
in joint mapping for both simulations. For the first sim-
ulated set of QTLs under the coincident linkage model,
the estimates of respective QTL covariance are close to 0
for both experiments. For the second simulated set of



Table 2. Bayesian Estimates of Joint Mapping and Single-Trait Mapping from the First Simulation Experiment

Analysis Methoda

and Interval
(∼cM)

Sum of the
QTL Intensity

QTL Location
(cM) 2jqj,1

2jqj,2 jqj,12
2ja,1

2ja,2 ja,12
2je,1

2je,2 je,12 m

J-12: .5512 (.0146) .3669 (.0180) .1793 (.0101) .9946 (.0095) 1.0704 (.0163) .0590 (.0058)
20–28 .9940 24.3411 (2.2529) .2138 (.0103) .3170 (.0123) �.0135 (.0019) .0376m1 (.0019)
72–81 .9976 75.5649 (2.0745) .2288 (.0146) .2947 (.0132) .2360 (.0071) .0251m2 (.0016)

S-1: .8307 (.1394) .8992 (.0270) .0401m1 (.0044)
18–33 .8924 25.0136 (14.7105) .1438 (.0304)
71–84 .9260 77.1874 (14.3854) .1869 (.0322)

S-2: .5325 (.0624) .9813 (.0276) .0286m2 (.0030)
21–32 .9168 25.7168 (6.5950) .2492 (.0336)
68–81 .9364 73.9050 (9.5818) .2660 (.0296)

NOTE.—Both traits and are continuous. Posterior mean squared errors of the estimates are given in parentheses. , , and are the jth ( ) QTL (co)variances of the two traits; , , and2 2 2 2y y j j j j p 1,2 j j j1 2 qj,1 qj,2 qj,12 a,1 a,2 a,12

are the polygenic (co)variances of the two traits; and , , and are the residual (co)variances of the two traits.2 2j j je,1 e,2 e,12

a J-12 p joint mapping for traits and ; S-1 p separate mapping for trait ; S-2 p separate mapping for trait .y y y y1 2 1 2

Table 3. Bayesian Estimates of Joint Mapping and Single-Trait Mapping from the Second Simulation Experiment

Analysis Methoda

and Interval
(∼cM)

Sum of the
QTL Intensity

QTL Location
(cM) 2jqj,1

2jqj,2 jqj,12
2ja,1

2ja,2 ja,12
2je,1 je,12 m

J-12: .7806 (.0965) .5270 (.0505)
23–33 .9848 26.3234 (5.9781) .2364 (.0203) .3389 (.0333) �.0026 (.0040) .2156 (.0111) .9000 (.0211) �.0128 (.0056) �.0394m1 (.0038)
69–79 .9658 74.4096 (2.3955) .2103 (.0246) .3472 (.0369) .2277 (.0123) �.0291m2 (.0029)

S-1:
18–33 .8924 25.0136 (14.7105) .1438 (.0304)
71–84 .9260 77.1874 (14.3854) .1869 (.0322) .8307 (.1394) .8992 (.0270) .0401m1 (.0044)

S-2: .6591 (.1982) �.0343m2 (.0050)
17–32 .9214 25.1521 (13.1565) .3573 (.0595)
65–78 .8853 72.1356 (21.4333) .4044 (.0916)

NOTE.—The continuous trait and the binary trait are considered in the analysis. Posterior mean squared errors of the estimates are given in parentheses. , , and are the jth ( ) QTL (co)variances2 2y w j j j j p 1,21 2 qj,1 qj,2 qj,12

of the two traits; , , and are the polygenic (co)variances of the two traits; and , , and are the residual (co)variances of the two traits.2 2 2 2j j j j j ja,1 a,2 a,12 e,1 e,2 e,12

a J-12 p joint mapping for traits and ; S-1 p separate mapping for trait ; S-2 p separate mapping for trait .y y y w1 2 1 2
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Table 4. BF for Testing Pleiotropy and
Coincident Linkage for the Two QTLs
Detected by Joint Mapping in Both
Experiments

Experiment and
Detected QTL

Interval
(cM)

BF
(Modelplei. vs. Modellink.)

1a:
QTL 1 20–28 3.55#10�3

QTL 2 72–81 1.87#102

2b:
QTL 1 23–33 8.26#10�2

QTL 2 69–79 .49#102

a Experiment 1 considered two continuous traits.
b Experiment 2 considered one continuous trait and

one binary trait.

QTLs with pleiotropic effects, the corresponding QTL co-
variance estimates accordingly suggest a high QTL-effect
correlation (close to 1) between the two traits. The results
presented here show that the genetic mechanism of QTLs
can be preliminarily probed through the respective esti-
mates of covariance. Moreover, appropriate statistical test-
ing—for example, use of the BF—can be used to further
discriminate coincident linkage from pleiotropy.

The estimates of the overall mean, the polygene
(co)variances, and the residual (co)variances are also given
in tables 2 and 3 for the two simulations. It is clear that
the covariance estimates for polygene and residual effects
between traits can be obtained only from joint analyses.
It appears that the estimates of these parameters are largely
around the simulated values. However, the estimates from
joint analyses are much closer to the true parameters and
have smaller posterior mean squared errors than do those
from separate analyses in both experiments.

The results presented in tables 1–3 and figure 1 dem-
onstrate that the developed multivariate version of Bayes-
ian mapping performs well for multiple continuous traits
as well as for a mixture of traits. Compared with separate
analyses, our joint-mapping method can enhance the pre-
cision and power in QTL detection as well as in estimation
of other parameters. Moreover, from simulation results, it
appears that joint mapping for multiple continuous traits
always outperforms that for a mixture of traits, probably
because of information loss in binary phenotypic data.

In table 4, we present the estimates of the BF for testing
pleiotropy versus coincident linkage in the two simula-
tion experiments. We calculated the BF on the basis of the
MCMC process, to test coincident linkage of two non-
pleiotropic QTLs against pleiotropy of a common QTL.
The test was performed for each interval region where the
QTL had been found in the initial joint analysis. For the
first experiment, two QTL intervals, one 20–28 cM and
the other 72–81 cM, were considered. For the second ex-
periment, the tests were conducted in the two regions,
one 23–33 cM and the other 69–79 cM. According to the
commonly used criteria for choice of model based on the
BF,22,40 both estimates of the BF for the first set of QTLs in
the two simulation experiments are far less than 0.1,
which indicates a much higher posterior probability for
the coincident linkage model and provides strong evi-
dence for accepting the hypothesis of coincident linkage
of two nonpleiotropic QTLs within this interval. For the
second set of QTLs, we obtain the BF values from both
simulations, which are much larger than 10.0. This gives
strong evidence favoring the hypothesis of the second set
of QTLs having pleiotropic effects on both traits. On the
basis of the results in table 4, we accept the hypothesis
that there exists coincident linkage of two nonpleiotropic
QTLs within the interval of the first set of QTLs and one
QTL with pleiotropic effects within the interval of the
second set of QTLs for both simulation experiments. These
results are consistent with the simulated genetic mecha-
nism for the respective QTLs.

To confirm our proposed joint-mapping method, the
multiple continuous data set simulated in the first exper-
iment was also analyzed using the program SOLAR42 ver-
sion 3.04. Figure 2 shows the LOD-score profiles for J-12,
S-1, and S-2 along the chromosome. We can see that each
LOD-score profile shows two peaks. These two peaks are
at positions 25 cM and 76 cM for J-12, 24 cM and 77 cM
for S-1, and 26 cM and 74 cM for S-2, all overlapping the
true locations of the two simulated QTLs. Comparing the
shapes of different LOD-score profiles, we found that the
LOD-score profile for J-12 has the highest peaks among
the three types of analyses. These results are consistent
with those obtained using our Bayesian joint-mapping
method. Finally, in the J-12 analysis, we ran SOLAR to test
pleiotropy versus coincident linkage at the two peak po-
sitions. At position 25 cM, we were able to reject the hy-
pothesis of complete pleiotropy with an extremely small
P value ( ) while accepting the hypothesis�9P p 6.91 # 101

of coincident linkage ( ). At position 76 cM, weP p .23050

rejected the hypotheses of coincident linkage with a very
small P value ( ) but accepted the hy-�10P p 5.87 # 100

pothesis of complete pleiotropy ( ). These resultsP p .37411

are also in agreement with those obtained by using our
testing method based on the BF.

It is apparent from figures 1 and 2 that the QTL intensity
curves are much narrower and the peaks are more precisely
located close to the simulated true QTLs with our method
than with SOLAR. In addition, to draw generalizations
from the studies, we simply simulated 50 independent
samples because of the high computational demands of
the MCMC algorithm for simulation 1, on the basis of the
same parameter settings. Although 50 replicates are not
sufficient to accurately evaluate the statistical power, a
general idea about the performance of our method can be
obtained in this way. In each replicate, we claimed a QTL
as “detected” if there was a remarkable QTL intensity peak
around the “true” position. We present the average esti-
mates for parameters of each QTL obtained from 50 rep-
licates in all analyses. As presented in table 5, higher pow-
ers and fewer posterior mean squared errors were largely
seen in the joint analyses.
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Table 5. Average Estimates of QTL Parameters
Obtained from 50 Replicates in Each Analysis of the
First Simulation Study

QTL and
Analysis
Method

Parameter Estimate

Position
(cM) Vqtl Power

1:
J-12: 24.5072 (2.6319) 1.00 (50/50)

Trait 1 .2307 (.0252)
Trait 2 .2856 (.0183)

S-1 26.1832 (9.1047) .1659 (.0344) .92 (46/50)
S-2 25.4635 (7.2281) .2706 (.0375) .98 (49/50)

2:
J-12: 75.6623 (2.7051) 1.00 (50/50)

Trait 1 .2086 (.0173)
Trait 2 .3120 (.0198)

S-1 75.3598 (8.7454) .1795 (.0426) .94 (47/50)
S-2 74.0064 (7.3095) .2941 (.0373) 1.00 (50/50)

NOTE.—The averaged posterior mean squared errors over 50 rep-
licates are given in parentheses.

Figure 2. LOD-score profiles of QTL mapping from joint analysis of two continuous traits (J-12) and separate analysis for trait 1 (S-
1) and trait 2 (S-2), with the use of SOLAR software. Two QTLs are simulated at positions 25 and 75 cM.

Real-Data Analyses

Bone mineral density (BMD) is the primary predictor of
bone strength and fracture risk.43–45 Areal bone size (ABS)
is also a significant determinator of bone strength and has
shown independence in predicting fracture risk.46–49 Both
BMD and ABS have strong determination, with heritabil-
ities 150% in human populations.43–45 Studies show that
BMD and ABS are genetically correlated and may share
some genetic determination.49

To identify genomic regions that harbor QTLs having
common effects on BMD and ABS at the forearm, we re-
cently performed a bivariate genomewide linkage scan in
a large sample of 451 white pedigrees comprising 4,498
individuals (X. Liu, Y. Liu, J. Liu, Y. Pei, P. Xiao, H. Shen,
J. Deng, R. R. Recker, H.-W. Deng, unpublished data).
Our preliminary results demonstrated a suggestive signal
at chromosome 7p15, which showed coincident linkage.
To further validate our proposed method, we performed
a bivariate linkage scan, using our method on the same
real-data set. Here, we performed linkage analyses only
on chromosome 7 (encompassing 21 genotyped micro-
satellite markers), where the highest linkage peak was ob-
served. For ease of calculation, we picked 364 independent
nuclear families, comprising 2,007 subjects, from the orig-
inal sample set. The number of sibs ranges from 2 to 14
across the families, with an average of 5.5.

As we did in simulation studies, we conducted Bayesian
mapping for the real-data set, using both univariate and
bivariate analyses. The QTL intensity distributions ob-
tained from joint analysis (for BMD and ABS) and from
separate analyses for BMD and ABS are given in figure 3.
A QTL intensity peak was obtained in each analysis (joint
analysis and separate analyses), highly favoring a single-
QTL model. Furthermore, the joint analysis of BMD and
ABS suggested a chromosome region having common ef-
fects on both traits. However, as clearly shown in figure

3, it is difficult to identify the linkage to ABS by performing
single-trait analysis, because of the modest genetic effects
and, thus, the weak linkage signals. As expected, we ben-
efited from joint analysis under this situation because it
yielded a more intense peak than did separate analyses for
BMD and ABS. To further differentiate pleiotropy versus
coincident linkage, we calculated the BF on the chro-
mosomal interval 43–44 cM, where the QTL intensity
peak was obtained. A coincident linkage model was fa-
vored from the calculation of the BF (0.0891). Our find-
ings herein from the use of the Bayes method are largely
consistent with those from our earlier linkage studies
that used variance-components analyses implemented in
SOLAR.

We also obtained the estimates of the number of QTLs
and other relative parameter estimates for both BMD and
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Figure 3. QTL intensity distributions based on joint analysis and separate analyses for BMD and ABS of wrist on chromosome 7

ABS (data not shown). Compared with separate single-trait
analyses, the joint analysis showed less estimation vari-
ance for the QTL number, higher posterior probability for
the interval of identified QTLs, and lower SEs of parameter
estimation. The increased estimation accuracy of param-
eters and higher posterior QTL intensity in real-data anal-
ysis clearly indicate that Bayesian joint analysis renders
advantages over separate analyses, which provides further
evidence to support our findings demonstrated in simu-
lation studies.

Discussion

In this study, a joint-mapping method was developed us-
ing the MCMC algorithm in a Bayesian framework. The
proposed method can handle multiple continuous traits,
as well as a mixture of continuous and discrete traits (such
as disease status).

Our proposed method has significant practical impor-
tance for genetic mapping of human complex diseases,
such as essential hypertension (MIM 145500), type 2 di-
abetes (MIM 125853), osteoporosis (MIM 166710), obe-
sity (MIM 601665), etc. When we map disease-suscepti-
bility genes, the disease status is recorded and is generally
treated as a dichotomous trait in statistical analysis. More-
over, in practical studies, measures of some highly related
quantitative traits (risk factors of the disease) are often
measured. For example, BMD, a quantitative measure of
bone mass, is often used to evaluate the risk of osteopo-
rotic fracture. Joint mapping that uses information from
various data types can essentially increase precision of pa-
rameter estimations and, thus, the chance of identifying
disease-susceptibility genes. Most importantly, given that
quantitative risk factors may not share 100% of genetic
determination with disease outcomes,50,51 joint analyses
of disease and quantitative risk factors can identify those
genes that are shared and that are distinct between these
two different types of disease-related phenotypes.

We performed an MCMC process to generate the mar-

ginal posterior distribution of the parameters of interest,
which is not used in other existing joint-mapping meth-
odologies. Inference for all parameters is based on their
respective posterior samples. Two types of simulation ex-
periments were conducted to evaluate the performance
of the proposed method. The results clearly demonstrate
that, compared with the single-trait analysis, our method
can identify QTLs with higher posterior probabilities and
narrower intervals and can estimate unknowns with
smaller posterior mean squared errors. These findings sug-
gest that the Bayesian joint mapping introduced here can
improve the precision of parameter estimation and pro-
duces stronger evidence to identify QTLs.

We adopted a Bayesian method and implemented the
procedure, using the MCMC algorithm. This is different
from other existing joint-mapping methods. We used the
Bayesian MCMC approach because of the following ob-
vious advantages in comparison with the commonly used
likelihood-ratio test methods: (1) One problem with the
traditional likelihood-ratio test is that it is not always easy
to obtain maximum-likelihood estimators either by max-
imizing the likelihood or by using an iterative algorithm,
such as expectation maximum. But, in a Bayesian frame-
work, we can avoid making such an optimization for joint-
mapping analysis. (2) The Bayesian MCMC approach al-
lows us to directly measure the probability as the evidence
of the identified QTL and respective interval, which makes
it easier to compare our results with the results of other
experiments. To our knowledge, no other existing statis-
tical paradigm is able to do this. In contrast, the P values
obtained from likelihood-ratio tests cannot be readily
compared among different experiments. Furthermore, we
often encounter the multiple-comparison problem in sta-
tistical tests, and it is still challenging to deal with several
dependent tests. Bayesian inference has an obvious ad-
vantage over traditional frequentist approaches, in terms
of multiple-comparison testing, in that degree of belief is
quantified by the posterior probabilities. Therefore, one
can avoid, to some extent, the potential illogical conclu-
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sions that arise from an simple “accept/reject” decision
process.52 (3) In a Bayesian framework, estimates of all
unknowns are obtained from their posterior distributions,
and, thus, we can avoid the use of asymptotic approxi-
mation by employing Fisher information. (4) The Bayesian
method can construct more-complicated models by in-
corporating multiple levels of randomness and combining
information from different sources.

Joint mapping offers an opportunity to distinguish co-
incident linkage from pleiotropy. In this study, we suc-
cessfully distinguished the coincident linkage model and
the pleiotropic model by employing a BF method for
Bayesian joint mapping. To confirm the results of our BF
method, we used SOLAR to test pleiotropy versus coin-
cident linkage on the basis of a likelihood-ratio test6 for
two continuous traits that are simulated in the first ex-
periment. The results from SOLAR are highly in agreement
with those from our BF method. However, our method
gives much better precision and resolution, as shown in
figures 1 and 2. So far, a suite of methods have been de-
veloped for joint mapping, most of which1,5–7,10,53 were
based on likelihood-ratio tests. Departing from those like-
lihood-ratio–based methods, we used the BF to distinguish
coincident linkage from pleiotropic models. The BF au-
tomatically generates the posterior probabilities for each
model. The major advantage of the BF method is that it
does not rely on any asymptotic results, which is a must
for the likelihood-based methods, and it can provide exact
outcomes with any amount of information. The more in-
formation used, the higher the probability that the “best”
model will be obtained.54 Recently, Varona et al.40 pro-
posed a method that uses the BF to distinguish between
linked and pleiotropic QTLs under the linear regression
model. In their approach, they adopted a Gibbs sampler
to compute the posterior distribution of the QTL location
under the linkage model. However, it is not clear if this
approach could be adapted to identify the coincidently
linked QTLs residing in the same marker bracket.

In the MCMC process, efficiency of the two samplers—
that is, the Gibbs sampler and RJ-MCMC—depends on the
mixing property of the Markov chain, which in turn is
determined by the sampling scheme adopted and the pa-
rameterization involved in the model. To ensure that the
Markov chain can mix well, we improved our sampling
scheme when conducting RJ-MCMC for joint mapping
in both simulation experiments. Specifically, when deter-
mining the acceptance probability of adding a new QTL
via RJ-MCMC, we used the Gibbs sampler to perform an
extra 10 updates of parameters for the proposed QTL,
which greatly accelerated the convergence of the Markov
chain, as expected.

In our studies, we adopted a conservative approach to
deal with the convergence of MCMC. That is, thinning
and burn-in values for all MCMC analyses were set to 50
and 50,000 ( ), respectively. Empirically, these1,000 # 50
values are much higher than what are probably needed
to ensure convergence of MCMC. Furthermore, we ran

CODA, a widely used R package, to perform formal con-
vergence tests, using the method of Raftery and Lewis.55

From the diagnostic results for the two simulations (data
not shown), it is clear that dependence factors for all pa-
rameters are !5.0, which indicates that the thinning and
burn-in values adopted herein are reasonable for ensuring
the convergence of MCMC. As for RJ-MCMC output for
the QTL parameters, we generated a time-series plot of the
sampled points for the number of QTLs in each analysis
rather than use a formal convergence test. This is a com-
mon practice in Bayesian mapping.16,17,28,29 It also shows
that the RJ-MCMC algorithm mixes well over the num-
ber of QTLs. In addition, we calculated autocorrelation
coefficients for samples of each parameter by running
CODA. By comparing the amount of autocorrelation for
each chain of parameters between single-trait analyses and
joint analyses, we found that higher autocorrelation often
occurred in joint analyses. This further suggests that we
should generate a longer chain of parameters to reach con-
vergence with the increasing of the number of traits in-
volved in joint analyses, although the length of 51 # 10
is large enough in our studies.

In the RJ-MCMC process, the information about a QTL
is totally lost when we delete this QTL from the model,
which could influence the acceptance probability and the
mixing behavior.56 Recently, two promising methods pro-
posed for addressing the problem of RJ-MCMC—a sto-
chastic search variable selection (SSVS) approach56,57 and
a Bayesian shrinkage method58,59—were proposed for
Bayesian mapping in experimental populations. In the
SSVS procedure, a mixture prior is adopted to explicitly
make a probabilistic statement about the inclusion of a
QTL, and the markers with significant effects can be iden-
tified as those with higher posterior probability included
in the model. As for Bayesian shrinkage analysis, each
marker or marker interval is assumed to be associated with
a QTL. If a marker or marker interval is not associated
with any QTL, the corresponding QTL effect will be forced
to shrink toward zero. Both methods above can largely
avoid the problems seen in RJ-MCMC. Given the potential
advantages of these two methods over RJ-MCMC, we will
pursue further studies to extend them to a random model,
which involves QTLs having infinite alleles. Under such
a model, each QTL has infinite genotypes, and the QTL
effects may vary across different individuals. Hence, with
shrinkage analysis, it is impossible to shrink the des-
ignated QTL effect to zero if there is no associated QTL.
Similarly, in SSVS, it is hard to make a probabilistic state-
ment about the inclusion of a QTL according to the QTL
effect. As such, with variance-components analyses, it may
be a natural way to perform Bayesian shrinkage and SSVS
analyses based on QTL variances instead of QTL effects.
To develop such an extension of the two methods to an
infinite-allele model, substantial effort is still needed.

The presented method is a variance-components joint-
mapping procedure, which means that the infinite-allele
model is used and the (co)variances of QTLs and other
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random effects in the model are treated as parameters of
interest. Our method is quite suitable for natural outbred
populations, such as humans. This is because the number
of alleles at the locus is generally unknown in natural
populations. Although the biallelic model could be ap-
propriate in most situations, it may cause potential bias
in estimation if the true number of the QTL alleles exceeds
two. Using the variance-components model, we only need
to estimate the (co)variances of respective QTLs, regardless
of the number of the QTL alleles, which substantially
improves the robustness of the Bayesian joint-mapping
method.

In the simulation studies, for the purpose of simplicity,
we used only full-sib families to show the performance of
our proposed method. It is straightforward to extend our
method to complex pedigrees by using a general approach
to calculate the IBD matrix related to each QTL. Such a
general approach has been developed by many investi-
gators.42,60,61 In addition, although our proposed method
is focused on linkage analyses, it can be naturally extend-
ed to multiple-trait fine mapping by using both linkage
analysis information and linkage disequilibrium (LD) in-
formation if highly dense markers are studied. Generally,
combining LD information and linkage analysis infor-
mation can significantly improve the power and precision
of QTL mapping. For this situation, the extra effort needed
is to remove the original assumption that founder QTL
alleles are unrelated, and IBD probabilities between the
founder QTL alleles can be estimated through the existing
well-developed methods.62,63

In our analyses, we assumed no correlation between the
residuals. However, we acknowledge that the residual cor-
relation may have significant influence on QTL mapping
in joint analysis. From the findings of Jiang and Zeng1

and Allison et al.64 in joint-mapping analysis, the greatest
power increases usually occur when the QTL-induced cor-
relation is opposite in sign to the correlation induced by
residual factors. Our proposed method can directly handle
multiple phenotypic data without any modification when
correlated residuals are assumed. We will investigate the
efficiencies of our Bayesian joint-mapping procedure un-
der several scenarios of residual correlations in our future
endeavors.
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Appendix A

Joint Analysis with Multiple Continuous Traits and Mul-
tiple Ordered Categorical Traits

Assume normal continuous traits and orderedm m1 2

categorical traits, each having orderedC (s p 1,…,m )s 2

categories delimited by thresholds ( ).C � 1 m p m � ms 1 2

We denote as an vector of′ ′ ′ ′y p (y ,…,y ,…,y ) nm # 11 k n 1

observations with n individuals on continuous traitsm1

and and as′ ′ ′ ′ ′ ′ ′ ′w p (w ,…,w ,…,w ) y p (y ,…,y ,…,y )1 k n 1 k n

vectors of phenotypes and the unobservable li-nm # 12

ability of n individuals on discrete traits, respectively.m2

We also denote as the cth threshold for the sth discretetc,s

trait ( ). Similarly, if liability vector can bec p 1,…,C � 1 ys

drawn from its fully conditional distribution in each it-
eration of the MCMC process, Bayesian mapping for
mixed types of traits can be performed using them � m1 2

method for m continuous traits detailed above. Since dis-
crete data considered here fall in more than two categories,
we cannot predetermine the threshold value as donetc,s

for binary traits. Thus, no constraint is superimposed to
the (co)variance matrix of residual effects among dis-m2

crete traits. For convenience of explanation, we present
the (co)variance matrix R among all traitsm # m m � m1 2

as

2 … …⎛ ⎞j j F j jy y ,y y ,z y ,z1 1 m1 1 1 1 m2

_ 5 _ F _ 5 _
2… …j j F j jy ,y y y ,z y ,zm1 1 m1 m1 1 m1 m2

R p ------- ------- ------- F ------- ------- -------
2… …j j F j jz ,y z ,y z z ,z1 1 1 m1 1 1 m2⎜ ⎟_ 5 _ F _ 5 _

2… …j j F j j⎝ ⎠z ,y z ,y z ,z zm2 1 m2 m1 m2 1 m2

Q Qy y,zp ,( )
Q Qz,y z

where matrix R is partitioned into four matrices—m # m
that is, an residual (co)variance matrix amongm # m Q1 1 y

traits Y, an residual (co)variance matrix amongm # m Q2 2 y

traits , and an residual covariance matrixy m # m Q1 2 y,y

between traits Y and and its transpose, .y Qy,y

According to the assumption of the threshold model,65

it is straightforward to derive the fully conditional distri-
bution of liability for individual k:yk

p(y Fl,l,v,w,y ,y) ∝ p(y ,y Fl,l,v)p(w Fy )k �k k k k k

m C2 s

∝ p(y Fy ,l,l,v) I(t ! y � t )I(w p c) , (A1)� �[ ]k k c�1,s k,s c,s k,s
sp1 cp1

where and are the sth elements in vectors andy w yk,s k,s k

, respectively, for the sth discrete trait. meansw w p ck k,s

that the observation on the sth discrete trait of individual
k falls in category c. Specifically, , , andt p �� t p ��0,s Cs,s

for all s. In equation (A1), the fully con-t ! t ! … ! t0,s 1,s Cs,s

ditional distribution of liability vector is in the form ofyk
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a truncated, conditional multinormal distribution; each
element in corresponding to categorical trait s is trun-yk

cated at thresholds and . The mean vector of thet tc�1,s c,s

truncated conditional multinormal distribution is given
as

l

E(y Fl,l,v,w,y ,y) p b � u � q�k �k k,y k,y i,(k,y)
ip1

l

�1�Q (Q ) [y � b � u � q ] ,�y,y y k k,y k,y i,(k,y)
ip1

and the (co)variance matrix for the distribution is

�1Var (y Fl,l,v,w,y ,y) p Q � Q (Q ) Q .k �k y y,y y y,y

Since we cannot predefine the thresholds for each cat-
egorical trait, the Gibbs sampler is also employed to gen-
erate those thresholds in the MCMC process, simply on
the basis of a uniform distribution:

p(t Fy ,w ,t ,t ) pc,s .,s .,s c�1,s c�1,s

1
,

min [min (y Fw p c � 1),t ] � max [max (y Fw p c),t ].,s .,s c�1,s .,s .,s c�1,s

(A2)

where and w.,s denote subvectors of and w relatedy y.,s

to categorical trait s. For each trait , we suc-s(s p 1,…,m )2

cessively draw the samples of all thresholds int ,…,t1,s Cs�1,s

turn via equation (A2).
Compared with the original MCMC process for joint

analyses with multiple continuous traits, additionalefforts
are needed for mixed types of traits considered here, in-
cluding the following:

1. In step 1, we should assign proper starting values to
thresholds of each categorical trait according to re-
spective categories and then generate in terms ofy

threshold values and w.tc,s

2. In step 2, the samples of are drawn from equationtc,s

(A2), followed by performance of the Gibbs sampler,
to sample on the basis of equation (A1). After that,y

the joint analysis with continuous traits and li-m m1 2

ability variables is essentially the same as that for m
continuous traits.

Web Resources

The URLs for data presented herein are as follows:

Bayes Mapping for Multiple Traits, http://l.web.umkc.edu/liujian/
(for the program for our proposed method)

CODA, http://cran.us.r-project.org/
Online Mendelian Inheritance in Man (OMIM), http://www.ncbi

.nlm.nih.gov/Omim/ (for essential hypertension, type 2 dia-
betes, osteoporosis, and obesity)

SOLAR, http://www.sfbr.org/solar/

References

1. Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic
mapping for quantitative trait loci. Genetics 140:1111–1127

2. Weller JI, Wiggans GR, Vanraden PM, Ron M (1996) Appli-
cation of a canonical transformation to detection of quan-
titative trait loci with the aid of genetic markers in a multi-
trait experiment. Theor Appl Genet 92:998–1002

3. Lange C, Whittaker JC (2001) Mapping quantitative trait loci
using generalized estimating equations. Genetics 159:1325–
1337

4. Huang J, Jiang Y (2003) Genetic linkage analysis of a di-
chotomous trait incorporating a tightly linked quantitative
trait in affected sib pairs. Am J Hum Genet 72:949–960

5. Lund MS, Sorensen P, Guldbrandtsen B, Sorensen DA (2003)
Multitrait fine mapping of quantitative trait loci using com-
bined linkage disequilibria and linkage analysis. Genetics
163:405–410

6. Almasy L, Dyer TD, Blangero J (1997) Bivariate quantitative
trait linkage analysis: pleiotropy versus co-incident linkages.
Genet Epidemiol 14:953–958

7. Knott SA, Haley CS (2000) Multitrait least squares for quan-
titative trait loci detection. Genetics 156:899–911

8. Xu C, Li Z, Xu S (2005) Joint mapping of quantitative trait
loci for multiple binary characters. Genetics 169:1045–1059

9. Williams JT, Begleiter H, Porjesz B, Edenberg HJ, Foroud T,
Reich T, Goate A, Van Eerdewegh P, Almasy L, Blangero J
(1999) Joint multipoint linkage analysis of multivariate qual-
itative and quantitative traits. II. Alcoholism and event-re-
lated potentials. Am J Hum Genet 65:1148–1160

10. Williams JT, Van Eerdewegh P, Almasy L, Blangero J (1999)
Joint multipoint linkage analysis of multivariate qualitative
and quantitative traits. I. Likelihood formulation and simu-
lation results. Am J Hum Genet 65:1134–1147

11. Meuwissen TH, Goddard ME (2004) Mapping multiple QTL
using linkage disequilibrium and linkage analysis informa-
tion and multitrait data. Genet Sel Evol 36:261–279

12. Hackett CA, Meyer RC, Thomas WT (2001) Multi-trait QTL
mapping in barley using multivariate regression. Genet Res
77:95–106

13. Henshall JM, Goddard ME (1999) Multiple-trait mapping of
quantitative trait loci after selective genotyping using logistic
regression. Genetics 151:885–894

14. Mangin B, Thoquet P, Grimsley N (1998) Pleiotropic QTL
analysis. Biometrics 54:88–99

15. Gilbert H, Le Roy P (2003) Comparison of three multitrait
methods for QTL detection. Genet Sel Evol 35:281–304

16. Yi N, Xu S (2000) Bayesian mapping of quantitative trait loci
under the identity-by-descent-based variance component
model. Genetics 156:411–422

17. Yi N, Xu S (2000) Bayesian mapping of quantitative trait loci
for complex binary traits. Genetics 155:1391–1403

18. Dunson DB (2001) Commentary: practical advantages of
Bayesian analysis of epidemiologic data. Am J Epidemiol 153:
1222–1226

19. Yi N, Xu S, George V, Allison DB (2004) Mapping multiple
quantitative trait loci for ordinal traits. Behav Genet 34:3–15

20. Yi N, Xu S, Allison DB (2003) Bayesian model choice and
search strategies for mapping interacting quantitative trait
loci. Genetics 165:867–883

21. Yi N, Xu S (2001) Bayesian mapping of quantitative trait loci
under complicated mating designs. Genetics 157:1759–1771



www.ajhg.org The American Journal of Human Genetics Volume 81 August 2007 319

22. Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) A
Bayesian approach to detect quantitative trait loci using Mar-
kov chain Monte Carlo. Genetics 144:805–816

23. von Rohr P, Hoeschele I (2002) Bayesian QTL mapping using
skewed Student-t distributions. Genet Sel Evol 34:1–21

24. Uimari P, Hoeschele I (1997) Mapping-linked quantitative
trait loci using Bayesian analysis and Markov chain Monte
Carlo algorithms. Genetics 146:735–743

25. Uimari P, Thaller G, Hoeschele I (1996) The use of multiple
markers in a Bayesian method for mapping quantitative trait
loci. Genetics 143:1831–1842

26. Hoeschele I, Vanranden PM (1993) Bayesian analysis of link-
age between genetic markers and quantitative trait loci. I.
Prior knowledge. Theor Appl Genet 85:953–960

27. Hoeschele I, Vanranden PM (1993) Bayesian analysis of link-
age between genetic markers and quantitative trait loci. II.
Combining prior knowledge with experimental evidence.
Theor Appl Genet 85:946–952

28. Sillanpaa MJ, Arjas E (1999) Bayesian mapping of multiple
quantitative trait loci from incomplete outbred offspring
data. Genetics 151:1605–1619

29. Sillanpaa MJ, Arjas E (1998) Bayesian mapping of multiple
quantitative trait loci from incomplete inbred line cross data.
Genetics 148:1373–1388

30. Chan JSK, Kuk AYC (1997) Maximum likelihood estimation
for probit-linear mixed models with correlated random ef-
fects. Biometrics 53:86–97

31. Green PJ (1995) Reversible jump Markov chain Monte Carlo
computation and Bayesian model determination. Biometrika
82:711–732

32. Xu S, Gessler DD (1998) Multipoint genetic mapping of quan-
titative trait loci using a variable number of sibs per family.
Genet Res 71:73–83

33. Sorensen D, Gianola D (2002) Likelihood, Bayesian and
MCMC methods in quantitative genetics. Springer-Verlag,
New York

34. Hastings WK (1970) Monte Carlo sampling methods using
Markov chains and their applications. Biometrika 57:97–109

35. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH,
Teller E (1953) Equations of state calculations by fast com-
puting machines. J Chem Phys 21:1087–1092

36. Gelman A, Carlin JB, Stern HS, Rubin DB (1995) Bayesian
data analysis. Chapman and Hall, London

37. Jannink JL, Fernando RL (2004) On the Metropolis-Hastings
acceptance probability to add or drop a quantitative trait lo-
cus in Markov chain Monte Carlo-based Bayesian analyses.
Genetics 166:641–643

38. Sillanpaa MJ, Gasbarra D, Arjas E (2004) Comment on “On
the Metropolis-Hastings acceptance probability to add or
drop a quantitative trait locus in Markov chain Monte Carlo-
based Bayesian analyses.” Genetics 167:1037

39. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:
773–795

40. Varona L, Gomez-Raya L, Rauw WM, Clop A, Ovilo C, No-
guera JL (2004) Derivation of a Bayes factor to distinguish
between linked or pleiotropic quantitative trait loci. Genetics
166:1025–1035

41. Bulmer MG (1980) The mathematical theory of quantitative
genetics. Oxford University Press, New York

42. Almasy L, Blangero J (1998) Multipoint quantitative-trait
linkage analysis in general pedigrees. Am J Hum Genet 62:

1198–1211
43. Liu YJ, Shen H, Xiao P, Xiong DH, Li LH, Recker RR, Deng

HW (2006) Molecular genetic studies of gene identification
for osteoporosis: a 2004 update. J Bone Miner Res 21:1511–
1535

44. Liu YZ, Liu YJ, Recker RR, Deng HW (2003) Molecular studies
of identification of genes for osteoporosis: the 2002 update.
J Endocrinol 177:147–196

45. Ralston SH, de Crombrugghe B (2006) Genetic regulation of
bone mass and susceptibility to osteoporosis. Genes Dev 20:
2492–2506

46. Augat P, Reeb H, Claes LE (1996) Prediction of fracture load
at different skeletal sites by geometric properties of the cor-
tical shell. J Bone Miner Res 11:1356–1363

47. Duan Y, Parfitt A, Seeman E (1999) Vertebral bone mass, size,
and volumetric density in women with spinal fractures. J
Bone Miner Res 14:1796–1802

48. Seeman E, Duan Y, Fong C, Edmonds J (2001) Fracture site-
specific deficits in bone size and volumetric density in men
with spine or hip fractures. J Bone Miner Res 16:120–127

49. Deng HW, Xu FH, Davies KM, Heaney R, Recker RR (2002)
Differences in bone mineral density, bone mineral content,
and bone areal size in fracturing and non-fracturing women,
and their interrelationships at the spine and hip. J Bone
Miner Metab 20:358–366

50. Deng HW, Mahaney MC, Williams JT, Li J, Conway T, Davies
KM, Li JL, Deng H, Recker RR (2002) Relevance of the genes
for bone mass variation to susceptibility to osteoporotic frac-
tures and its implications to gene search for complex human
diseases. Genet Epidemiol 22:12–25

51. Deng HW, Chen WM, Recker S, Stegman MR, Li JL, Davies
KM, Zhou Y, Deng H, Heaney R, Recker RR (2000) Genetic
determination of Colles’ fracture and differential bone mass
in women with and without Colles’ fracture. J Bone Miner
Res 15:1243–1252

52. Neath AA, Cavanaugh JE (2006) A Bayesian approach to the
multiple comparisons problem. J Data Sci 4:131–146

53. Cheverud JM, Routman EJ, Irschick DJ (1997) Pleiotropic ef-
fects of individual gene loci on mandibular morphology. Evo-
lution 51:2006–2016

54. Garcia-Cortes LA, Cabrillo C, Moreno C, Varona L (2001) Hy-
pothesis testing for the genetic background of quantitative
traits. Genet Sel Evol 33:3–16

55. Raftery A, Lewis S (1992 ) How many iterations in the Gibbs
sampler? In: Bernardo J, Berger J, Dawid A, Smith A (eds)
Bayesian statistics. Oxford University Press, Oxford, United
Kingdom

56. Yi N (2004) A unified Markov chain Monte Carlo framework
for mapping multiple quantitative trait loci. Genetics 167:
967–975

57. Yi N, George V, Allison DB (2003) Stochastic search variable
selection for identifying multiple quantitative trait loci. Ge-
netics 164:1129–1138

58. Xu S (2003) Estimating polygenic effects using markers of the
entire genome. Genetics 163:789–801

59. Wang H, Zhang YM, Li X, Masinde GL, Mohan S, Baylink DJ,
Xu S (2005) Bayesian shrinkage estimation of quantitative
trait loci parameters. Genetics 170:465–480

60. Mao Y, Xu S (2005) A Monte Carlo algorithm for computing
the IBD matrices using incomplete marker information. He-
redity 94:305–315

61. Wang T, Fernando RL, Grossman M (1998) Genetic evaluation



320 The American Journal of Human Genetics Volume 81 August 2007 www.ajhg.org

by best linear unbiased prediction using marker and trait in-
formation in a multibreed population. Genetics 148:507–
515

62. Meuwissen TH, Karlsen A, Lien S, Olsaker I, Goddard ME
(2002) Fine mapping of a quantitative trait locus for twinning
rate using combined linkage and linkage disequilibrium map-
ping. Genetics 161:373–379

63. Meuwissen THE, Goddard ME (2001) Prediction of identity-

by-descent probabilities from marker-haplotypes. Genet Sel
Evol 33:605-634

64. Allison DB, Thiel B, St Jean P, Elston RC, Infante MC, Schork
NJ (1998) Multiple phenotype modeling in gene-mapping
studies of quantitative traits: power advantages. Am J Hum
Genet 63:1190–1201

65. Falconer DS, Mackay TFC (1996) Introduction to quantitative
genetics. Longmans Green Harlow, Essex, United Kingdom


	Bayesian Mapping of Quantitative Trait Loci for Multiple Complex Traits with the Use of Variance Components
	Methods
	Bayesian Mapping for Multiple Continuous Traits
	Bayesian Mapping for Mixed Types of Traits
	Testing Pleiotropy versus Coincident Linkage

	Results
	Simulation Studies
	Real-Data Analyses

	Discussion
	Acknowledgments
	References


